

UNIVERSITÄT SIEGEN • Prof. Dr.-Ing. Horst Görg • 57068

Naturwissenschaftlich-Technische Fakultät

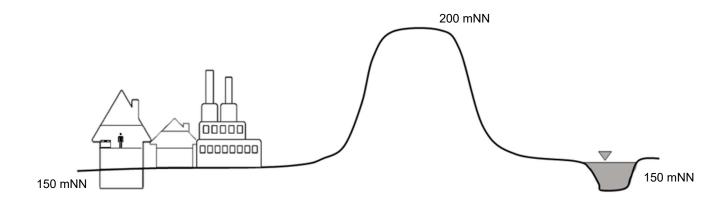
Bauingenieurwesen

Abwasser- und Abfalltechnik

Univ.-Prof. Dr.-Ing. Horst Görg

Paul-Bonatz-Straße 9-11 57068 Siegen

goerg@bauwesen.uni-siegen.de http://www.umwelt.uni-siegen.de


Klausur 17.02.2025

Siedlungswasser- und Abfallwirtschaft Wasserversorgung I

Name:	Vorname:	
MatrNr.:		
Erreichte Punkte: v	on insgesamt:	25 Punkte

Aufgabe 1: Siedlungswasserwirtschaftliche Grundlagen [2,5 Punkte]

Tragen Sie **exemplarisch** den möglichen Verlauf der "**Systemkette**" der Wasserversorgung bis zum Endverbraucher mit den verschiedenen **Elementen** in den **Plan** ein (*Beschriftung*)!

Welche Aspekte können die Wasserversorgungssicherheit der Systemkette beeinflussen?

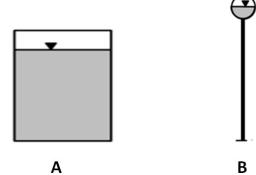
Aufgabe 2	Wasserv	erbrauch/
-----------	---------	-----------

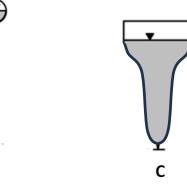
[2,0 Punkte]

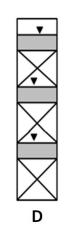
Zone / Bereich:

a.)	Welche Wasserzählerablesung würden Sie für ein Gebäude mit 4 Personen in Siegen bei durchschnittlichem Wasserverbrauch nach 1 Jahr <u>in etwa</u> erwarten ?
	Tragen Sie den geschätzten Zählerstand (m³) ein !
	0 0 1 1 5 0
b.)	Nennen Sie drei Ursachen für Verluste in Wasserversorgungsnetzen!
	Wie hoch würden Sie die Verluste in einem typischen Wasserversorgungsnetz in Deutschland in etwa einschätzen?
c.)	Nennen Sie zwei Gründe für die "Probleme" der Wasserversorgung auf der spanischen Baleareninsel Mallorca !
	=
Aufg	jabe 3: Wassergewinnung [2,0 Punkte]
a.)	Welches ist die häufigste Art der Trinkwassergewinnung in Deutschland?
	Quellwasser Grundwasser Oberflächenwasser
b.)	In welcher Schutzzone / Bereich einer Trinkwassergewinnung gelten die geringsten

Auflagen hinsichtlich der Ver- und Gebote?


c.) Benennen Sie Vor- und Nachteile von unterschiedlichen Wassergewinnungsarten!


Wassergewinnungsart	
1) Brunnen	Vorteil: Nachteil:
2) Talsperre	Vorteil: Nachteil:
3) Meerwasser	Vorteil: Nachteil:


Aufgabe 4: Wasserverteilung

[5,5 Punkte]

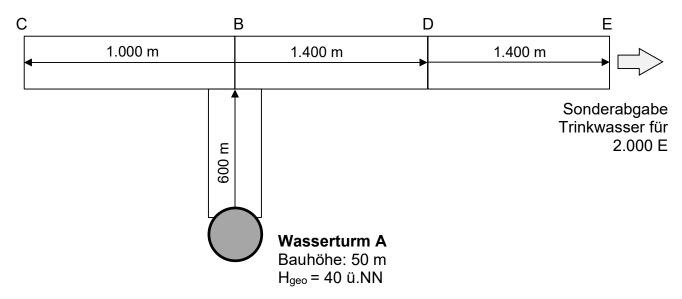
a.) Dargestellt sind die Wassertürme A, B, C und D!

Welcher der dargestellten Wassertürme ...

... kann den "höchsten" Betriebsdruck erzeugen?

bietet die "größte" Versorgungssicherheit (z.B. im Brandfall) ?

... hat die "höchste" Austauschrate (kürzeste Aufenthaltszeit) ?


... kann am ehesten "mehrere" **Druckzonen** versorgen ?

b.)	Nennen Sie zwei Vorteile eines	Ringnetzes !							
c.)	■Nennen Sie <u>grundlegende</u> Arm		nit der zugehörigen Funktion !						
	Armatur:								
d.)	Welche der genannten Rohrma Sicht des Arbeits-/Gesundheits								
	- Mehrfaci	hnennungen sind mögli	ch -						
	Asbestzement	Blei	Duktiler Guss						
	Grauguss	PE	PVC						
e.)	Ergänzen Sie die Hinweisschi	lder für eine 120 m lanç	ge Leitung "GGG DN 100" !						
	Hydrant: 13,1 m rechts; 0,8 m vorne Schieber: 5,1 m rechts; 1,2 m vorne								
	Wasser								
	Schildfarbe:	Schildfarbe:							
	Ordnen Sie die Leitung einem I	Netz (-abschnitt) zu !							

Aufgabe 5: Wasserversorgungsnetz

[13,0 Punkte]

Für die Wasserversorgung der Gebiete AB, BC, BD und DE durch den Wasserturm A soll die Planung des Leitungsnetzes gem. nachfolgender Abbildung vollzogen werden.

Gegeben:

Mittlerer Wasserverbrauch: w = 120 I/(Exd)Spitzenfaktoren: $f_d = 1,8 \text{ f}_h = 2,0$

Metermengenwerte: m = 0.01 l/(sxm) (bei Spitzenabnahme)

m = 0,002778 l/(sxm) (im Stundenmittel/Durchschnittstag)

Integrale Rauheit: $k_i = 0,4$ mm

Bebauung: Gebiet AB: EG + 2 OG $H_{geo,B}$ = 40 m ü.NN

Gebiet BC: EG + 3 OG $H_{geo,C}$ = 25 m ü.NN Gebiet BD: unbebaut $H_{geo,D}$ = 25 m ü.NN Gebiet DE: EG + 3 OG $H_{geo,E}$ = 20 m ü.NN

Gesucht

- a.) Dimensionieren Sie das Wasserleitungsnetz für eine Betriebsgeschwindigkeit v ≈ 0,7

 1,0 m/s! Ermitteln Sie für den Wasserturm die Höhe des Wasserspiegels, welche erforderlich ist, um die erforderlichen Versorgungsdrücke (gemäß DVGW W400 für neue Netze) zu gewährleisten. Geben Sie die Drücke an den Entnahmepunkten an .
- b.) Welche Wassermenge muss eine Talsperre zur Verfügung stellen, um den gesamten **Jahresbedarf** (365 Tage) des Versorgungsgebietes abzudecken?

Berechnungsaufgabe: Wasserverteilung

Strang	I	Е	m	Q _E	Q _Ü	ΣQ	٧	NW	I _E	h _v	Σh_v	H_{geo}	Drucklinie	Р
von bis	m		l/sxm	l/s	l/s	l/s	m/s	mm	m/km	m	m	m NN	m NN	bar

Legende: I: Stanglänge, E: Einwohnerzahl, m: Metermengenwert, Q_E : Gebietsentnahme, Q_i : Übernahme/Übergabe, ΣQ : Durchfluss, v: Geschwindigkeit, NW: Nennweite, I_E : Eniergieliniengefälle, h_V : Verlusthöhe, Hgeo: Geländehöhe, P: Versorgungsdruck