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Possible sources of ocean energy

Wave energy: Converters harvest the energy in ocean waves. Available technologies include 
oscillating water columns, oscillating body and overtopping converters.

Tidal energy: Converters harvest the energy due to tides. Options are tidal-range 
technologies, tidal-current or tidal-stream converters.

Salinity gradient energy: Resulting from differing salt concentrations. Existing projects are based on 
"pressure retarded osmosis", with freshwater flowing through a membrane to 
increase the pressure in a tank of saltwater or on "reverse electro dialysis" with 
ions of salt passing through alternating tanks of salt- and freshwater.

Ocean thermal energy conversion: Generates power from the temperature difference between warm surface 
seawater and cold seawater at 800–1,000 metres depth.

Most of the projects only operated at a research or development stage and have not reached
commercial applications!
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Possible sources of ocean energy

(International Renewable Energy Agency: https://www.irena.org/ocean)

Installed capacity ocean energy: Installed capacity offshore wind energy:
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Tidal energy converting systems

Tidal energy: 

 tidal range
 tidal currents

World map of M2 tidal amplitude (NASA)

(IPCC report (2011) „Renewable Energy Sources and Climate Change Mitigation, chapter 6: Ocean Energy“)
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Tidal energy converting systems

Twin horizontal axis Cross-flow Vertical axis

(IPCC report (2011) „Renewable Energy Sources and Climate Change Mitigation, chapter 6: Ocean Energy“)
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Tidal energy converting systems

(https://www.power-technology.com/projects/strangford-lough/)

Seagen

 Commissioned 2008 in Strangford Lough, Northern Ireland.
 Rated capacity of 1.2 MW from two 600 KW turbines.
 Total investment of £ 12 Mio.
 During operation production of up to 5GW/h equal to the

power required by 1,500 households annually.
 In total over 11.6 GWh of power during its life cycle.
 Successfully decommissioned in July 2019.

One of the very few projects
suitable for commercial use!
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Wave energy converting systems
Global offshore annual wave power level distribution

(IPCC report (2011) „Renewable Energy Sources and Climate Change Mitigation, chapter 6: Ocean Energy“)
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Wave energy converting systems

Regional theoretical potential of wave energy

Only areas where theoretical wave power P ≥ 5 kW/m and latitude ≤ 66.5º

(IPCC report (2011) „Renewable Energy Sources and Climate Change Mitigation, chapter 6: Ocean Energy“)
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Wave energy converting systems

(IPCC report (2011) „Renewable Energy Sources and Climate Change Mitigation, chapter 6: Ocean Energy“)
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Wave energy converting systems
Oscillation water column Oscillation body Overtopping

(IPCC report (2011) „Renewable Energy Sources and Climate Change Mitigation, chapter 6: Ocean Energy“)
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Wave energy converting systems

Pelamis

 Attenuator device.
 Agucadoura Wave Farm world’s first commercial wave 

energy project; located 5km off the Agucadoura coast in 
Portugal.

 Comissioning 2008, technical problems only after four 
months of use and tought back to land; plant was never 
be re-installed.

 A second-generation device, P2-001, was ordered by 
E.ON UK in 2009 and tested in 2010; another device, P2-
002, was deployed by ScottishPower in May 2012.

 P2-001 device decommissioned in April 2016; P2-002 
device decommissioned in 2016.

(He et al., 2013)

(https://www.power-technology.com/projects/pelamis/)
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Wave energy converting systems

Mutriku wave energy plant

 Oscillating water column device.
 Located in Mutriku harbour, Bay of Biscay, Spain.
 Comissioned in 2011; still in operation.
 16 Wells turbines with a total rated power of 300 kW 

integrated in an existing breakwater.
 Since 2019 part of Biscay Marine Energy Platform 

(BiMEP) and available as research and test site.

(https://soz-etc.com/)

(https://www.power-technology.com/projects/mutriku-wave/)
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Wave energy converting systems

High investment and high maintenance costs, i.e. most devices only reached prototype status

(IPCC report (2011) „Renewable Energy Sources and Climate Change Mitigation, chapter 6: Ocean Energy“)
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Joint Research project NEMOS

 Joint research project aimed at developing a prototype of the NEMOS wave energy converter
 Project partners:

NEMOS (Leader), DST (wave tank etc.), UDE/HCU (foundation), Schaeffler (pulleys), Liros (ropes)

History:

2010: Tank tests in research 
facilities

2013: Scaled tests in 
nearshore environment

2016: Full scale power take-
off tests

2019: Large scale offshore 
installation

(all: Nemos)
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Joint Research project NEMOS

guiding ropes
working rope

pulleys

tower with PTO

floater

? cyclic inclined tension loading of
varying direction © Nemos

Sub-project: NEMOS-Foundation

 Developing suitable mooring 
systems.

 Consultancy on site selection, 
and site investigations.

 Analysis of possible foundation 
solutions.

 Research on suitability of helical 
anchors as mooring alternative.

 Performance of scale model 
tests on helical anchors in 
saturated sand under 
monotonous and cyclic loading.

Initial Concept of NEMOS Wave Energy Converter



• Analysis of frame structure with shallow steel plate foundations with skirts and ballast tanks:

• At a later stage substitution of ballast tanks and skirts by helical anchors as fixation elements including a pre-stressing
arrangement based on a spring system for pre-stress adjustment.
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Joint Research project NEMOS

Alternative foundation solutions:

Top view: System & loading:
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Joint Research project NEMOS

Shallow plate foundations:

Shallow beam foundation:
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Joint Research project NEMOS

Results of numerical analysis:

 Arrows indicate direction of wave attack.
 Overall sufficient stability in all investigated load

cases. 
 Foundation solution feasible.
 Tension stresses in parts of foundation base

critical.
 Skirts to prevent scour and sufficient ballasting

required.
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Joint Research project NEMOS

Helical anchors as foundation alternative?

First use: Maplin Sands Lighthouse, England, 1838 by Alexander Mitchell

(Perko, 2009)

onshore use:

Utility poles, masts, 
small wind turbines etc.

offshore use:

Pipelines, bridge piers, 
bouys etc.
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Joint Research project NEMOS

Helical anchors as mooring alternative?

Advantages:

 Increased pullout capacity by additional helical plate compared to pile of similar
shaft geometry.

 Ecologically friendly → low noise emissions compared to typical offshore pile
installation by driving which requires application of e.g. bubble curtains to avoid
disturbence and harm of sea mammals.

 Economically attractive → reduced material consumption, reuse possible.
 Decomissiong/removal possible by applying opposite installation procedure.

Disadvantages:

 Installation under water in harsh offshore environments far offshore.
 Installation requires sufficient ground conditions (e.g. no boulders) and equipment

(compression and torsion).
 Cyclic loading behaviour critical (only tension loading) and relatively unknown.

(Byrne & Houlsby, 2015)
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Helical anchors for mooring floating devices

Scale Model Tests on Helical Piles – Experimental Setup

Test tank: Loading Arrangement:

 Test soil: medium to coarse dense sand, saturated after pluviation

 Model anchors: Helix ∅ 10/12/15/20 cm, shaft ∅ 3 cm, closed-ended, model scale ∼1:8, either placed during sand
pluviation or screwed in after pluviation with very low rotation speed; constant embedment depth of 1.0 m.

Model anchors:



23

Helical anchors for mooring floating devices
Monotonous Pullout Tests
 Tests conducted displacement-controlled with lowest possible speed of 20 mm/s of available indoor crane.
 Pullout capacity Qu determined from peak of load-displacement curve. 
 No significant effects from installation procedure (placed (p) or screwed in (s)).

load cell

Anchor No. & Installation type
Helix 

diameter D 
[mm]

H/D
[-]

Qu,mean
[kN]

S4-1p, S4-2s, S4-3s, S4-4s, 
S4-5p, S4-6p, S4-7s 100 10 9.18

S5-1p, S5-2p, S5-3p 120 8.3 12.55

S6-1p, S6-2p, S6-3p 150 6.7 17.80

S7-1p, S7-2p, S7-3p 200 5 22.93

Test results:
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Helical anchors for mooring floating devices

Analysis of Dimensionless Pullout Capacity Nqu

 Test results of similar magnitude to other small scale model tests, but cannot be predicted by available design methods.
 Significant influence of screwed installation for greater speeds expected; further possible scale effects and effect of water saturation to

be investigated further.

Measured vs. calculated capacity:

Ghaly et al. (1991)
Klym et al. (1985)
Ghaly & Hanna (1994)
Newgard et al. (2015)
Individual bearing method
Measured capacity
Trendline of measured values

Repeated tests
screwed in with
higher speed

Comparison with other tests results:
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Helical anchors for mooring floating devices

Anchor Behaviour under Cyclic Loading

Fcyk

Cyclic load characteristics and test program:

Fmax

Fmin

= −
−

cyk

U,Grenz min

F
CLR [ ]

Q F

Definition of cyclic load ratio CLR:

with: = −cyk max minF F F

and:    Fmin = pre-stress

 Performance of multistage tests with anchor S4 (DHelix = 10 cm), placed during pluviation.
 CLR increased in steps: 0.05/0.10/0.15/0.20/0.25 [-].
 Each load level maintained for at least N = 10,000 cycles, frequency 0.167 Hz.
 Pre-stress of Fmin/Qu = 0.00/0.05/0.10, 3 tests for each pre-stress.

Time [s]

Fo
rc

e
[N

]



26

Helical anchors for mooring floating devices

Results of Cyclic Multistage Tests 
Fmin/Qu = 0.00

Fmin/Qu = 0.10

di
sp
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ce
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en
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m
]
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sp
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ce

m
en

t[
m

m
]

No. of cycles N [-]

No. of cycles N [-]

 No progressive failure for tested CLR and 
numbers of cycles.

 Shakedown only for very small load
levels.

 For higher load levels stabilization of
accumulation process especially for a pre-
stressed anchor.

 Pre-stressing improves anchor behaviour, 
but accumulated displacements
continously increase.

 Reproducibility of tests only limited.
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Helical anchors for mooring floating devices

Analysis of the Postcyclic Pullout Capacity

Nqu,post = Nqu,mean

Test results for anchor S4, placed
Results from Schiavon (2016), screwed

 Though different test conditions (e.g. effect of saturation, possible scale effects) a strong effect of the installation
process on the measured pullout capacities is anticipated and needs to be investigated further.

Fmin/Qu = 0.10

Fmin/Qu = 0.00

Fmin/Qu = 0.05

Fmax/Nqu,mean [-]

N
qu

,p
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qu
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Conclusion & Outlook

 Reliability of available design methods for pull out capacity of helical piles is very limited.

 Micro-mechanical behavior of anchors during generation of uplift resistance not fully understood, especially the 
contribution of helical plate and shaft; Moreover, long-term behavior under cyclic tensile loading – as typical for 
floating offshore structures - was rarely investigated.

New Research: Analysis of micro-mechanical behaviour using Discrete Element Method

(Evans & Zhang, 2019)
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Conclusion & Outlook

© Nemos

Installed Nemos prototype converter and research tower

 Monopiles finally used for tower
and pulley support points.

 Converter meanwhile
decommissioned.

 Research tower now in the
ownership of the West Flanders 
Development Agency – POM 
West-Vlaanderen.

 Used by different companies 
and research institutes as a 
measurement platform for 
various research related to blue 
energy.



30

Conclusion & Outlook

Monopile with twin horizontal axis turbines: Tripod with vertical axis turbine:

Project WindTide



Our website:

University of Siegen
Chair of Geotechnical Engineering
Paul-Bonatz-Str. 9-11
D-57076 Siegen

kerstin.lesny@uni-siegen.de
www.bau.uni-siegen.de/subdomains/geo

Thank you very much for your attention!
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