Modulbeschreibungen Anlage 7: Modulbeschreibungen zu Artikel 2-4 | | AUDENANO4 | 1 | | |---------------------|--|--|--| | Nr. | 4HDEMA01 | | | | Modultitel | Uncertainty in soil mechanics and water resources | | | | Pflicht/Wahlpflicht | P | | | | Moduldauer | 1 Semester | | | | Angebotshäufigkeit | WiSe | | | | Lehrsprache | Englisch | | | | LP | 6 | | | | SWS | 4 | | | | Präsenzstudium | 60 h | | | | Selbststudium | 120 h | | | | Workload | 180 h | | | | Lehr- und Lernform | ggf. Veranstaltungen/Modulelemente | SWS | | | Vorlesung | Uncertainty in soil mechanics and water resources | 3 | | | Seminar | Uncertainty in soil mechanics and water resources | 1 | | | Leistungen | Form | Dauer/Umfang | | | Prüfungsleistungen | Klausur | 120 Min | | | Studienleistungen | Keine | 120 171111 | | | Qualifikationsziele | Students have a basic understanding of uncert | tainties related to | | | | · | weather, flow processes), their interrelations and representation in environmental modelling. For this, the course is divided into three parts: | | | | Part 1: Concepts of uncertainty characterization Basic understanding of uncertainty quantification and assessment, including the concept of predictive probability density. Basic understanding of Bayesian theory (prior distributions, likelihood and posterior distributions) for model parameterisation. Basic understanding of stochastic modelling of time-dependent environmental processes (e.g. Markov chain modelling). Skill acquisition in the use of statistical and graphical libraries for representation in Python (scipy, matplotlib). | | | | | Part 2: Uncertainties in water resources Students learn to understand uncertainty in related problems (flow forecasting, reserv Acquaintance of students with the relative resin water resources management (meteorol uncertainty vs. model and parameter uncert Students will learn how to address parameter through Bayesian inference. Students become familiar with the concuncertainty in flow forecasting. Students are introduced to (stochastic) dynamic in water resources management under uncertainty in flow forecasting. Students will understand the relationship be students will understand the relationship be | roir management). Dole of uncertainties ogical and climate rainty). The meter uncertainty The cept of predictive The amic programming The creation of the control co | | | | history of the ground and the composi multiphase porous medium; they will furthe differences in the resultant mechanical behances are familiar with ground investigation. | tion of soil as a
or be able to reflect
aviour. | | | Voraussetzungen für die Vergabe von LP | Bestandene Prüfungsleistung | |--|--| | Voraussetzungen für die Teilnahme | Keine | | Studiengängen | | | Verwendbarkeit in den folgenden | averaging, Bayesian updating) MA Engineering of Hydro-Environmental Extremes | | | Procedures for uncertainty description within probabilistic
analyses (e.g. selection of appropriate distribution type, spatial | | | design. | | | Characterization of uncertainties related to soil mechanics and
illustration of the resultant consequences for geotechnical | | | establishing the ground model. | | | the role of water in soil mechanics.Basic concepts of field and laboratory ground investigation; | | | classification, deformation and strength characteristics of soils, | | | Part 3: Uncertainties in soil mechanics Formation history of soils, types and composition of soils, soil | | | reservoir management under conditions of uncertainty. | | | Introduction to stochastic dynamic programming for optimal | | | Assessing parameter uncertainty in hydrological models
through Bayesian inference | | | forecasting, climate projections. | | | uncertainty).The concept of predictive uncertainty for weather and flow | | | uncertainty, parameter uncertainty, weather and climate | | | Introduction to sources of uncertainty and their relative roles
in hydrological and water resources models (model | | | Part 2: Uncertainties in water resources problems | | | uncertainty. | | | Introduction to Bayesian inference (prior distribution,
likelihood, posterior distribution) for addressing parameter | | | their use in uncertainty assessment. | | | (Normal, Log-normal, Beta, Gamma and Weibull distribution). Brief introduction to Gaussian multivariate distributions and | | | Essential parametric distribution models and their properties (Normal Log pormal Reta Gamma and Woibull distribution) | | | correlation and autocorrelation). | | | Introduction to and repetition of basic statistical concepts
(statistical moments, linear regression models of variates, | | Inhalte | Part 1: Concepts of uncertainty characterization | | | updating in cases of scarce soil data. | | | variability of soil parameters in geotechnical design.Students are familiar with the use and benefits of Bayesian | | | Students will be able to establish procedures to address spatial | | | of structural loading) | | | mechanics (inherent uncertainty of soils, model uncertainty and measurement errors, statistical uncertainty, uncertainties | | | Students will understand sources of uncertainties related to soil | | | |